Eigenvalues of Graphs and Sobolev Inequalities
نویسندگان
چکیده
We derive bounds for eigenvalues of the Laplacian of graphs using the discrete versions of the Sobolev inequalities and heat kernel estimates.
منابع مشابه
Logarithmic Harnack inequalities∗
Logarithmic Sobolev inequalities first arose in the analysis of elliptic differential operators in infinite dimensions. Many developments and applications can be found in several survey papers [1, 9, 12]. Recently, Diaconis and Saloff-Coste [8] considered logarithmic Sobolev inequalities for Markov chains. The lower bounds for log-Sobolev constants can be used to improve convergence bounds for ...
متن کاملAsymptotic distribution of eigenvalues of the elliptic operator system
Since the theory of spectral properties of non-self-accession differential operators on Sobolev spaces is an important field in mathematics, therefore, different techniques are used to study them. In this paper, two types of non-self-accession differential operators on Sobolev spaces are considered and their spectral properties are investigated with two different and new techniques.
متن کاملModified Logarithmic Sobolev Inequalities in Discrete Settings
Motivated by the rate at which the entropy of an ergodic Markov chain relative to its stationary distribution decays to zero, we study modified versions of logarithmic Sobolev inequalities in the discrete setting of finite Markov chains and graphs. These inequalities turn out to be weaker than the standard log-Sobolev inequality, but stronger than the Poincare’ (spectral gap) inequality. We sho...
متن کاملLog-sobolev, Isoperimetry and Transport Inequalities on Graphs
In this paper, we study some functional inequalities (such as Poincaré inequalities, logarithmic Sobolev inequalities, generalized Cheeger isoperimetric inequalities, transportation-information inequalities and transportation-entropy inequalities) for reversible nearest-neighbor Markov processes on a connected finite graph by means of (random) path method. We provide estimates of the involved c...
متن کاملEstimates of Semigroups and Eigenvalues Using Functional Inequalities
Boundedness properties of semigroups are studied by using general PoincaréSobolev type inequalities, from which Gross’ theorem on hyperboundedness and log-Sobolev inequality is extended. Some results hold also for nonsymmetric semigroups. For instance, a super-Poincaré inequality always imply an estimate of the corresponding semigroup. In particular, the log-Sobolev inequality implies the hyper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Combinatorics, Probability & Computing
دوره 4 شماره
صفحات -
تاریخ انتشار 1995